
CATEGORY THEORY

TOPIC VIII - GROUPS (COMP)

PAUL L. BAILEY

1. Groups

1.1. Definition. The most studied algebraic object with one operator is a group,
which is a monoid in which each element has an inverse. For convenience, we will
write generic groups using multiplicative notation.

Definition 1. A group (G, ·, 1) consists of a nonempty set G together with a binary
operation · : G×G→ G satisfying

(G1) g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 for all g1, g2, g3 ∈ G (associativity);
(G2) there exists 1 ∈ G such that 1 · g = g · 1 = g for all g ∈ G (existence of an

identity);
(G3) for every g ∈ G there exists g−1 ∈ G such that gg−1 = g−1g = 1 (existence

of inverses).

We recall that the identity and inverses are unique. Since a group is associative,
parentheses are useless when writing operations with three or more elements. In
general, groups are not commutative; we have a special name for the case that they
are.

Definition 2. Let G be a group. We say the G is abelian if

(G4) g1g2 = g2g1 for all g1, g2 ∈ G (commutativity).

1.2. Examples. Understanding the theory of groups requires copious examples,
and we give several now.

Example 1. The following are standard additive groups.

• (Z,+, 0), the integers under addition;
• (Q,+, 0), the rational numbers under addition;
• (R,+, 0), the real numbers under addition;
• (C,+, 0), the complex numbers under addition.

In each case, inverses are negatives. All additive groups are assumed be to abelian.

Example 2. Let (M, ·) be a multiplicative monoid, and set

M∗ = {g ∈M | g is invertible }.
Certainly the restriction of multiplication to M∗ is still associative. Note that 1 is
invertible, as it is its own inverse. Also, if g is invertible, then g−1 is also invertible,
with inverse g. Thus M∗ is closed under inverses, so M∗ is a group.

Example 3. The following are standard multiplicative groups.

• (Z∗, ·, 1), the integers under addition (how big is this?);
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• (Q∗, ·, 1), the rational numbers under addition;
• (R∗, ·, 1), the real numbers under addition;
• (C∗, ·, 1), the complex numbers under addition.

In each case, inverses are reciprocals. Not all multiplicative groups are abelian, but
these are.

Example 4. Let Zn denote the set of residues classes of integers modulo n. The
set Zn is a group under addition, with 0 the identity and n− a the inverse of a.
This abelian group contains n elements.

Example 5. Let Z∗
n = {a ∈ Zn | gcd(a, n) = 1}. Then Z∗

n is a group under
multiplication, with identity 1. The inverse of a ∈ Z∗

n is x, given from the Euclidean
algorithm equation ax+ ny = 1. This abelian group contains φ(n) elements.

Example 6. Let X be a set, and set Sym(X) = {f : X → X | f is bijective}.
Then (Sym(X), ◦, idX) is a nonabelian group under composition of functions, where
idX : X → X is the identity function given by idX(x) = x.

Example 7. Let X = {1, . . . , n}, and set Sn = Sym(X). Let ε = idX , and write
composition of functions multiplicatively. Then (Sn, ·, ε) is a nonabelian group
containing n! elements.

Example 8. Let n be a positive integer, and let Rn denote the set of ordered n-
tuples of real numbers. Then (Rn,+,~0) is an abelian group under vector addition,

where ~0 denotes the zero vector.

Example 9. Let Mm×n(R) be the set of m × n matrices over the real numbers.
Then Mm×n(R) is an abelian group under matrix addition. The identity is the zero
m× n matrix. If m = n, we may shorten this to Mn(R).

Example 10. Let GLn(R) = Mn(R)∗ be the set of invertible n× n matrices over
the real numbers. Then GLn(R) is a nonabelian group under matrix multiplication.
The identity is the identity n× n matrix.

Example 11. Let X be a set, and let P(X) denote the power set of X, which is
the set of all subsets of X. If A,B ⊂ X, define the symmetric difference of A and
B to be A4B, given by

A4B = (A ∪B) r (A ∩B);

Then (P(X),4,∅) is a group under symmetric difference. The identity is ∅, and
the inverse of A ∈ P(X) is itself.

1.3. Cayley Tables. If A is a set with a binary operation, we can list this binary
operation explicitly in a table. The elements of the set are listed vertically on the
left and horizontally across the top to label the rows and columns. If a row is
labeled a and a column is labeled b, the entry in this row and column is ab. This is
called a Cayley table. Such a table defines the operation, and if the tables asserts
that the operation satisfies the three group laws, then the table defines a group. Of
course, this is only practical for relatively small groups.
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Example 12. Let Z∗
10 = {1, 3, 7, 9}; this is a group under multiplication. One

computes the following Cayley table.

· 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Then Z∗
10 is a cyclic group of order four, which means that each member is a power

of one the elements (in this case, either 3 or 7).

Example 13. Let K = {e, a, b, c}. Define multiplication on K by

· e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Then K is a Klein four group; it is abelian.

Example 14. Let Q = {±1,±i,±j,±k}. Define multiplication on Q by

· 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
k −k k −j j i −i 1 −1

Then Q is a quaternion group, which is nonabelian and satisfies

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

Example 15. We produce the Cayley table for S3 = Sym({1, 2, 3}). This is a
group with 3! = 6 elements, and these elements are

S3 = {ε, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}.

Use cycle multiplication to determine products, such as (1 2 3)(1 2) = (1 3).

· ε (1 2 3) (1 3 2) (1 2) (1 3) (2 3)

(1 2 3) (1 2 3) (1 3 2) ε (1 3) (2 3) (1 2)

(1 3 2) (1 3 2) ε (1 2 3) (2 3) (1 2) (1 3)

(1 2) (1 2) (2 3) (1 3) ε (1 2 3) (1 3 2)

(1 3) (1 3) (1 2) (2 3) (1 2 3) ε (1 3 2)

(2 3) (2 3) (1 3) (1 2) (1 3 2) (1 2 3) ε

1.4. Commuting Elements. Let G be a group. If a, b ∈ G, we say that a and
b commute if ab = ba. There are many important groups which contain very
few elements that commute; it is worthwhile to mention a couple of properties of
commuting elements.
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Proposition 1. Let G be a group and let a, b ∈ G. Then a and b commute if and
only if (ab)n = anbn for all n ∈ N.

Proof. If a and b commute, the (ab)n = anbn. This follows from successive usage of
associative and commutative properties; for example, (ab)2 = (ab)(ab) = ((ab)a)b =
(a(ba))b = (a(ab))b = (a2b)b = a2b2. This may be written more formally using
induction.

If (ab)2 = a2b2, then a and b commute; to see this, write abab = aabb, multiply
on the left by a−1 to get a−1abab = a−1aabb, so that bab = abb. Now multiply on
the right by b−1 to get babb−1 = abbb−1, so that ba = ab. �

Example 16. Let α, β ∈ S5 be given by α = (1 2 3) and β = (4 5). Then α3 = ε
and β2 = ε, so (αβ)6 = α6β6 = ε; this is because disjoint cycle commute.

However, note that if α = ((1 2 3) and β = (2 5), these cycles do not commute,
and

αβ = (1 2 5 3) and (αβ)6 = (αβ)2 = (1 5)(2 3).

Example 17. In the group GL3(R), the scalar matrices are those of the form

λI =

λ 0 0
0 λ 0
0 0 λ

. A scalar matrix commutes with any other matrix; in fact, these

are the only matrices which commute with every other matrix.

One can tell if a group is abelian by looking at its Cayley table; if the Cayley
table is symmetric across its diagonal, then the operation is commutative.

Example 18. The quaternion group is not abelian. Indeed, the only elements
which commute with every other element are 1 and −1.

Proposition 2. Let G be a group such that g2 = 1 for every g ∈ G.
Then G is abelian.

Proof. Let g, h ∈ G. Since g2 = 1, multiplying both sides by g−1 gives g = g−1.
Similarly, h = h−1.

Now (gh)2 = 1, whence gh = (gh)−1 = h−1g−1 = hg. Thus G is abelian. �

Example 19. In the group (P(X),4,∅), if A ⊂ X, we have A2 = A4A = ∅;
thus, by Prop 2, this group is abelian.

2. Subgroups

2.1. Definition of Subgroup. Every abstract mathematical object admits sub-
objects; in the case of groups, the subobjects are called subgroups, which are merely
subsets of the original set which are themselves groups. The definition is designed
to make proving a subset is a subgroup more transparent.

Definition 3. Let G be a group and let H ⊂ G.
We say that H is a subgroup of G, and write H ≤ G, if

(S0) H is nonempty;
(S1) h1, h2 ∈ H ⇒ h1h2 ∈ H;
(S2) h ∈ H ⇒ h−1 ∈ H.
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These are exactly the conditions guaranteeing that a subgroup is a subset which
is itself a group under the same binary operation. Conditions (S1) says that the
operation is closed, that is, the restriction of the function · : G×G→ G to H ×H
produces a function defined on H × H, and (S1) ensures that the image of this
function is contained in H, so we have an operation · : H × H → H. Certainly,
since the operation is the same, the associativity of this operation is inherited.

Condition (S2) says that the subset contains inverses. We note that, in the
presence of (S1) and (S2), property (S0) is equivalent to the presence of 1 ∈ H.

(SO) 1 ∈ H.

Indeed, if 1 ∈ H, then H is nonempty. On the other hand, if H is nonempty, then
H contains some element, say h ∈ H. Then h−1 ∈ H by (S2), so 1 = hh−1 ∈ H
by (S1).

Proposition 3. Let G be a group and let H ⊂ G. Then H ≤ G if

(S0) H is nonempty;
(S1) h1, h2 ∈ H ⇒ h1h2 ∈ H;
(SF) H is finite.

Proof. It suffices to show that in the presence of properties (S0) and (S1), property
(SF) implies property (S2).

By (S0), H is nonempty, so let h ∈ H. Let A be the subset of G given by
A = {hn | n ∈ N}. By (S1), A ⊂ H, so by (SF), A is finite. Thus hn = hm

for some m < n. Thus hn−m = hn(hm)−1 = 1. Therefore hn−m−1h = 1, so
h−1 = hn−m−1 ∈ A ⊂ H, and H satisfies (S2). �

2.2. Examples of Subgroups. We now list examples of subgroups; some exam-
ples apply to specific groups, whereas others are general principles, in the sense
that certain types of subgroups appear in every group.

Example 20. Let G be a group. Then {1} ≤ G and G ≤ G.

Definition 4. Let G be a group and let H ≤ G. We say that H is proper is H 6= G,
and we say that H is trivial if H = {1}.

We are often interested in proper nontrivial subgroups.

Example 21. The groups Z,Q,R are subgroups of C under addition. The groups
Q∗,R∗,U are subgroups of C∗ under multiplication.

Example 22. Let n ∈ Z and set

nZ = {nk | k ∈ Z}.
Thus nZ is a subgroup of Z under addition.

2.3. Intersection of Subgroups. Given two subgroups of a group G, we can form
a new subgroup of G by taking the intersection.

Proposition 4. Let G be a group and let H,K ≤ G. Then H ∩K ≤ G.

Proof. We verify properties (S0), (S1), and (S2).
(S0) Since H,K ≤ G, we have 1 ∈ H and 1 ∈ K. Thus 1 ∈ H ∩K.
(S1) Let a, b ∈ H ∩K. Then a, b ∈ H and a, b ∈ K, Since H and K are closed

under multiplication, ab ∈ H and ab ∈ K. Thus ab ∈ H ∩K.
(S2) Let a ∈ H ∩K. Then a ∈ H and a ∈ K. Since H and K are closed under

inverses, a−1 ∈ H and a−1 ∈ K. Thus a−1 ∈ H ∩K. �
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If G is a group, the intersection of any number of subgroups of G is itself a
subgroup; this generalizes the last proposition.

Proposition 5. Let G be a group and let H be a nonempty collection of subgroups
of G. Then ∩H is a subgroup of G.

Proof. Since 1 ∈ H for every H ∈ H, we see that 1 ∈ ∩H. Let h1, h2 ∈ ∩H. Then
h1, h2 ∈ H for every H ∈ H. Then h1h

−1
2 ∈ H for every H ∈ H because each H is

a subgroup. Thus h1h
−1
2 ∩H. Therefore ∩H ≤ G. �

Example 23. Let m,n ∈ Z and let d = gcd(m,n).
Then dZ = mZ ∩ nZ, so dZ ≤ mZ and dZ ≤ nZ.

Given a group G and an element g ∈ G, we can construct the smallest subgroup
of G which contains g.

Proposition 6. Let G be a group and let g ∈ G. Set

〈g〉 = {gk | k ∈ Z}.

Then 〈g〉 ≤ G.

Proof. Since 1 = g0, 1 ∈ 〈g〉. If gm, gn ∈ 〈g〉, then gmgn = gm+m ∈ 〈g〉. Finally,
if gm ∈ 〈g〉, then (gm)−1 = g−m ∈ 〈g〉. This verifies properties (S0), (S1), and
(S2). �

2.4. Product of Groups. We we are working with two groups G and H written
multiplicatively, we may distinguish the identity elements as 1G and 1H , respec-
tively.

Proposition 7. Let H and K be groups. Then H ×K is a group.

Proof. We verify the three properties of being a group.
(G1) Let g1, g2, g3 ∈ G. Then there exist h1, h2, h3 ∈ H and k1, k2, k3 ∈ K such

that g1 = (h1, k1), g2 = (h2, k2), and g3 = (h3, k3). Then

(g1g2)g3 = ((h1, k1)(h2, k2))(h3, k3) by definition of the set H ×K
= ((h1h2)h3, (k1k2)k3) by definition of the operation on H ×K
= (h1(h2h3), k1(k2k3)) by associativity in H and K

= (h1, k1)((h2, k2)(h3, k3)) by definition of the operation on H ×K
= g1(g2g3) by definition of the set H ×K.

(G2) The identity for H ×K is 1G = (1H , 1K). To verify this, let g ∈ G so that
g = (h, k) for some h ∈ H and k ∈ K. Then

g · 1G = (h, k)(1H , 1K) = (h · 1H , k · 1K) = (h, k) = g;

1G · g = (1H , 1K)(h, k) = (1H · h, 1K · k) = (h, k) = g.

(G3) Let g ∈ G, so that there exist h ∈ H and k ∈ K with g = (h, k). Then
g−1 = (h−1, k−1), since

(h, k)(h−1, k−1) = (hh−1, kk−1) = (1H , 1K) = 1G;

(h−1, k−1)(h, k) = (h−1h, k−1k) = (1H , 1K) = 1G.

�
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Let G and H be groups. Define

Ĝ = {(g, 1) ∈ G×H | g ∈ G} and Ĥ{(1G, h) ∈ G×H | h ∈ H}.

Then Ĝ and Ĥ are subgroups of G×H which “look exactly like” G and H.

2.5. Subgroups of Sn. Small nonabelian groups are most conveniently realized
as subgroups of Sn, and are often written in terms of one or two elements of the
group, where every other element of the group is a product of these.

Example 24. The symmetric group on n points is Sn.

Example 25. The cyclic group on n points, denoted Cn, is the smallest subgroup
of Sn containing the cycle ρ = (1 2 ...n); it consists of all powers of ρ, so

Cn = {ε, ρ, ρ2, . . . , ρn−1}.
For example,

• C2 = {ε, (1 2)};
• C3 = {ε, (1 2 3), (1 3 2)};
• C4 = {ε, (1 2 3 4), (1 3)(2 4), (1 4 3 2)}.

Example 26. View the group S3 as the set of rigid motions of a regular triangle.
Label the vertices 1, 2, and 3. One rotation of the triangle is the permutation
ρ = (1 2 3); then ρ2 = (1 3 2) and ρ3 is the identity ε. If we let τ denote
reflection across the line through vertex 1 and the midpoint of the opposite side,
then τ = (2 3). Then

S3 = {ε, ρ, ρ2, τ, τρ, τρ2},
and we compute its Cayley table using the fact that ρτ = τρ2.

· ε ρ ρ2 τ τρ τρ2

ε ε ρ ρ2 τ τρ τρ2

ρ ρ ρ2 ε τρ2 τ τρ
ρ2 ρ2 ε ρ τρ τρ2 τ
τ τ τρ τρ2 ε ρ ρ2

τρ τρ τρ2 τ ρ2 ε ρ
τρ2 τρ2 τ τρ ρ ρ2 ε

Example 27. Let D4 denote the set of rigid motions of a square. We label the
vertices 1, 2, 3, and 4 to realize D4 as a subgroup of S4. Let ρ = (1 2 3 4) be
rotation by 90◦, and let τ = (2 4) be reflection across the line through 1 and
3. Then ρ2 = (1,3)(2,4), ρ3 = (1 4 3 2), τρ = (1 4)(23), τρ2 = (1 3), and
τρ3 = (1 2)(3 4). Then

D4 = {ε, ρ, ρ2, ρ3, τ, τρ, τρ2, τρ3}.
One may use the fact that ρ2 commutes with every element ofD4, and that τρ = ρ3τ
to compute the entire Cayley table of D4.

Example 28. The dihedral group on n points, denoted Dn, the subgroup of Sn

containing 2n elements which represents the set of rigid motions of a regular n-gon.
If ρ = (1 2 ... n) is rotation and τ is reflection through the line contain vertex
1, then

Dn = {ε, ρ, ρ2, . . . , ρn−1, τ, τρ, τρ2, . . . , τρn−1}.
In the case n = 3, we have S3 = D3; for larger n, Dn is a proper subgroup of Sn.
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Example 29. The alternating group on n points, denoted An, is the smallest
subgroup of Sn which contains all of the three-cycles. For example, A3 = C3, and

A4 = {ε,(1 2 3), (1 3 2), (1 2 4), (1 4 2), (2 3 4), (2 4 3),

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

3. Cyclic Groups

3.1. Definition of Cyclic Group. A cyclic group is a group generated by a single
element. In multiplication notation, this means that every element in the group is
a power of the generator; in additive notation, this means that every element in
the group is a multiple of the generator.

Definition 5. Let G be a group. We say that G is cyclic if there exists g ∈ G such
that G = 〈g〉. In this case, we say that g generates G.

Example 30. The integers Z form a cyclic group; since every element of Z is a
multiple of 1, 1 is a generator, so Z = 〈1〉. Note the −1 is the only other generator.

Example 31. Consider the group Z under addition. Then 〈2〉 = 2Z, the set of
even integers.

Example 32. The modular integers Zn for a cyclic group generated by 0.

Example 33. Let ρ = (1 2 3) ∈ S3, so that ρ2 = (1 3 2). Let C3 = {ε, ρ, ρ2}.
Then C3 ≤ S3, and C3 = 〈ρ〉 = 〈ρ2〉.

The last three examples are examples of finite cyclic groups; the name “cyclic”
comes from this case. Note that if G is a group and g ∈ G. then 〈g〉 is a subgroup
of G which is cyclic, known as the cyclic subgroup generated by g.

Proposition 8. Let G be a cyclic group. Then G is abelian.

Proof. Since G is cyclic, G = 〈g〉 for some g ∈ G. Then any element in G is of the
form gn for some n ∈ Z. Thus if i, j ∈ Z, then gi and gj are two arbitrary elements
of G. Clearly, gigj = gg...g (i+j times) = gjgi. �

Proposition 9. Let G be a cyclic group and let H ≤ G. Then H is cyclic.

Proof. Let g be a generator for G. Then every element in G is of the form gk for
some k ∈ Z.

If H is trivial, then H = 〈1〉 is cyclic. Suppose that H is nontrivial and let
h ∈ H r {1}. Then h = gk for some k ∈ Z. If k < 0, then h−1 = g−k ∈ H; thus H
contains an element of the form gk where k is a positive integer.

Let k be the smallest positive integer such that gk ∈ H. Let h ∈ H; then h = gl

for some l ∈ Z. There exist unique q, r ∈ Z such that l = kq + r where 0 ≤ r < k.
Then

h = gl = gkq+r = (gk)qgr.

Since gk ∈ H, we have gr ∈ H. But r is nonnegative and less then k, so we must
have r = 0. Thus h = (gk)q, which proves that H = 〈gk〉. �
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3.2. Order of an Element. The order of an element is the length of the cycle it
creates when it is multiplied by itself. It is possible that the order is infinite, in
which case there really is not a cycle; otherwise, however, powers of the element
eventually loop back on themselves, thus creating a cycle of a given length.

Definition 6. Let g ∈ G. The order of g, denoted ord(g), is the smallest positive
integer n ∈ Z such that gn = 1, if such an integer exists; otherwise, ord(g) = ∞.
An exponent of g is any positive integer k ∈ N such that gk = 1.

Proposition 10. Let G be a group and let g ∈ G with ord(g) = n <∞. Then

(a) i, j ∈ {0, . . . , n− 1} and gi = gj ⇒ i = j;
(b) 〈g〉 = {1, g, g2, . . . , gn−1};
(c) |〈g〉| = ord(g);
(d) |G| = ord(g) if and only if G = 〈g〉.

Proof. Let i, j ∈ N with 0 ≤ i ≤ j < n. Suppose that gi = gj . Then gj−i = 1, and
j − i is a nonnegative integer. But j − i < n, and n is the smallest positive integer
such that gn = 1. Thus j = i. This shows that {1, g, g2, . . . , gn−1} ⊂ 〈g〉 is a
collection of n distinct elements. If k ≥ n, then there exist unique integers q, r ∈ Z
such that k = nq+r with 0 ≤ r < n. Now gk = gnq+r = (gn)qgr = 1q ·gr = gr; this
shows that 1, g, . . . , gn−1 is a complete list of the elements in 〈g〉, and |〈g〉| = ord(g).

If |G| = ord(g); since 〈g〉 ≤ G and |〈g〉| = ord(g), we see that G = 〈g〉. On the
other hand, we have already seen that if G = 〈g〉, then |G| = ord(g). �

Proposition 11. Let G be a group and let g ∈ G with ord(g) = n <∞.
Let m ∈ Z. Then

gm = 1 ⇔ n | m.

Proof. Suppose that gm = 1. There exist unique integer q, r ∈ Z with 0 ≤ r < n
such that m = nq + r. Then

gm = gnq+r = gnqgr = (gn)qgr = 1q · gr = gr.

But r is nonnegative and less than n; since n is the smallest positive integer such
that gn = 1, we must have r = 0. Conversely, suppose that n divides m. Then
m = qn for some q ∈ Z, so gm = gqn = (gn)q = 1q = 1. �

Proposition 12. Let G be a group and let g ∈ G with ord(g) = n <∞.
Let m ∈ Z. Then 〈g〉 = 〈gm〉 if and only if gcd(m,n) = 1.

Proof. There exist unique integers q, r ∈ Z such that m = qn + r with 0 ≤ r < n.
Since gn = 1, we see that gm = gr. Without loss of generality, assume that
0 < m < n.

Suppose that gcd(m,n) = d > 1. Then m = kd and n = ld for some integers
k, l > 1. Then (gm)l = gnk = 1, so ord(gm) < n, which shows that 〈gm〉 is properly
contained in 〈g〉.

Suppose that gcd(m,n) = 1. Then there exist x, y ∈ Z such that mx+ ny = 1.
Let gk be an arbitrary member of 〈g〉. Then gk = g(mx+ny)k = gmxkgnyk = gmxk.
This shows that 〈g〉 ⊂ 〈gm〉. The opposite inclusion is obvious, so 〈g〉 = 〈gm〉. �

Proposition 13. Let G be a group and let g ∈ G with ord(g) = n < ∞. Let
d,m ∈ Z be positive with d = gcd(m,n). Then ord(gm) = n

d .

Proof. Exercise. �
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Proposition 14. Let G be a cyclic group with |G| = n <∞.

(a) If H ≤ G, then |H| divides |G|.
(b) If d | n, then there exists a unique subgroup H ≤ G such that |H| = d.

Proof. Let g be a generator for G; then ord(g) = n.
Let H ≤ G. Then H is cyclic, so H = 〈h〉 for some h ∈ G. Since G is cyclic,

h = gm for integer m with 0 ≤ m ≤ n. Let k = ord(gm); we have seen that k
divides n = |G|. This proves (a).

Suppose that d | n; then n = dk for some k ∈ N. Let l = ord(gk). Then
(gk)d = gn = 1, so l divides d. If ord(gk) = l, then gkl = (gk)l = 1, so n divides kl.
Thus d divides l, so l = d. Thus 〈gk〉 is a subgroup of G of order d.

To see that this subgroup is unique, let H be a subgroup of G of order d. Then
H is cyclic, so H = 〈gm〉 for some integer m with 0 ≤ m < n. Then ord(gm) = d so
that gmd = 1; thus n divides md, that is, k divides m. Thus gm ∈ 〈gk〉, and since
both groups have order d, we see that 〈gm〉 = 〈gk〉. �

Proposition 15. Let G be a group and let h, k ∈ G be elements of finite order.
Suppose that gcd(ord(h), ord(k)) = 1. Then 〈h〉 ∩ 〈k〉 = {1}.
Proof. Let g ∈ 〈h〉 ∩ 〈k〉. Then ord(g)|ord(h) and ord(g)|ord(k), so that ord(g)
divides gcd(ord(h), ord(k)) = 1. Therefore ord(g) = 1, so g = 1. �

3.3. Order of Commuting Elements. If two element do not commute, it is
difficult to predict the order of the product. There are groups containing two
element of order two whose product has infinite order. However, if the elements
commute, we can predict the order of the product with some accuracy.

Definition 7. Let G be a group and let h, k ∈ G. We say that h and k commute
if hk = kh. We synonymously say that h centralizes h or k centralizes h.

Proposition 16. Let G be a group and let h, k ∈ G be elements of finite order
which commute. Suppose that 〈h〉 ∩ 〈k〉 = {1}.
Then ord(hk) = lcm(ord(h), ord(k)).

Proof. Exercise. �

Proposition 17. Let G be a group and let h, k ∈ G be elements of finite order
which commute. Suppose that gcd(ord(h), ord(k)) = 1.
Then ord(hk) = ord(h)ord(k).

Proof. Since the orders of h and k are relatively prime, their cyclic subgroups
intersect trivially. Then ord(hk) = lcm(ord(h), ord(k)) = ord(h)ord(k). �

4. Homomorphisms

4.1. Definition of Homomorphism. Abstract mathematics consists of the study
of objects with certain structures, and the functions between them that in some
way preserve these structures. For example, given two ordered sets, we may wish
to understand the increasing or decreasing functions between them. In the case
of groups, the structure is the binary operation, and the functions preserving that
structure are called homomorphisms.

Definition 8. Let G and H be a groups. A group homomorphism from G to H is
a function φ : G→ H such that

φ(g1g2) = φ(g1)φ(g2) for any g1, g2 ∈ G.
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Proposition 18. Let φ : G→ H be a homomorphism. Then

(a) φ(1G) = 1H ;
(b) φ(g−1) = φ(g)−1 for every g ∈ G;
(c) φ(gn) = φ(g)n for every g ∈ G and n ∈ Z.

Proof. We have φ(1G) = φ(1G · 1G) = φ(1G)φ(1G). Multiplying both sides by
φ(1G)−1 in H, we have 1H = φ(1G).

Let g ∈ G. Then 1H = φ(1G) = φ(g−1g) = φ(g)φ(g−1). Multiplying both sides
by φ(g)−1 in H yields φ(g)−1 = φ(g−1).

If n > 0, (c) follows from the definition of homomorphism by induction. Combine
this with (a) and (b) for the cases where n ≤ 0. We acknowledge that (c), in the
stated form, actually includes (a) and (b). �

Proposition 19. Let φ : G→ H be a homomorphism and let K ≤ G.
Then φ �K : K → H is a homomorphism.

Proof. This is obvious. �

4.2. Examples of Homomorphisms. We list a few well known examples of ho-
momorphisms; more examples will arise as we build the theory.

Example 34. Define a function

f : Z→ Z given by f(a) = 2a.

Then f(a + b) = 2(a + b) = 2a + 2b, so f is a homomorphism by the distributive
property. The image of f is the even integers.

Example 35. Let n ∈ Z, n ≥ 2, and define a function

ξn : Z→ Zn by ξn(a) = a.

Then ξn is a homomorphism. This is because we successfully defined addition in
Zn by a+ b = a+ b.

Example 36. Define a function

T : R3 → R3 by T (x, y, z) = (z, x, y).

This linear transformation is a homomorphism of the group of vectors under addi-
tion. Geometrically, this is rotation around the line x = y = z by 120◦.

Example 37. Define a function

exp : R→ R∗ by exp(x) = ex.

Then exp is a homomorphism from the real under addition to the nonzero reals
under multiplication, because ex+y = exey. The image of exp is R>, the positive
real numbers.

4.3. Properties of Homomorphisms. The homomorphic image of a subgroup is
a subgroup, and the homomorphic preimage of a subgroup is a subgroup. Compo-
sition of homomorphisms is a homomorphism. The order of a homomorphic image
of an element divides the order of the element. We now show these basic facts.
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Proposition 20. Let φ : G→ H be a homomorphism and let K ≤ G.
Then φ(K) ≤ H.

Proof. We verify the three properties of a subgroup.
(S0) Since K is a subgroup of G, 1G ∈ K. Since φ(1G) = 1H , 1H ∈ φ(K).
(S1) Let h1, h2 ∈ φ(K). Then there exist k1, k2 ∈ K such that φ(k1) = h1

and φ(k2) = h2. Let k = k1k2, and since K is a subgroup, k ∈ K; we have
φ(k) = φ(k1k2) = φ(k1)φ(k2) = h1h2, which shows that h1h2 ∈ φ(K).

(S2) Let h ∈ φ(K). Then h = φ(k) for some k ∈ K. Since K is a subgroup,
k−1 ∈ K, and φ(k−1) = φ(k)−1 = h−1, so h−1 ∈ φ(K). �

Proposition 21. Let φ : G→ H be a homomorphism and let K ≤ H.
Then φ−1(K) ≤ G.

Proof. We verify the three properties of a subgroup.
(S0) Since K is a subgroup of H, 1H ∈ K, and since φ(1G) = 1H , 1G ∈ φ−1(K).
(S1) Let g1, g2 ∈ φ−1(K). Then there exist k1, k2 ∈ K such that φ(g1) = k1

and φ(g2) = k2. Since φ is a homomorphism and K is a subgroup, φ(g1g2) =
φ(g1)φ(g2) = k1k2 ∈ K. Thus g1g2 ∈ φ−1(K).

(S2) Let g ∈ φ−1(K). Then φ(g) = k for some k ∈ K, and since K ≤ H,
k−1 ∈ K. Thus φ(g−1) = φ(g)−1 = k−1 ∈ K, so g−1 ∈ φ−1(K). �

Proposition 22. Let φ : G→ H and ψ : H → K be homomorphisms.
Then ψ ◦ φ : G→ K is a homomorphism.

Proof. If g ∈ G, then ψ ◦ φ(g) means ψ(φ(g)). Let g1, g2 ∈ G. Then

ψ(φ(g1g2)) = ψ(φ(g1)φ(g2)) = ψ(φ(g1))ψ(φ(g2)).

�

Proposition 23. Let φ : G→ H be a homomorphism and let g ∈ G be an element
of finite order. Then ord(φ(g)) | ord(g).

Proof. Let ord(g) = n. Then φ(g)n = φ(gn) = φ(1G) = 1H . Thus n is an exponent
of φ(g). �

4.4. Definition of Isomorphism. Of particular concern are those structure pre-
serving functions that are bijective, because this sets up a correspondence between
the objects which allows us to see that they are “essentially the same”; a change of
notation makes them the same.

Definition 9. An isomorphism is a bijective homomorphism. If there exists an
isomorphism from a group G to a group H, we say that G and H are isomorphic,
and write G ∼= H.

Proposition 24. Let G be a group. Then idG : G→ G is an isomorphism.

Proof. This is obvious. �

Proposition 25. Let φ : G→ H be an isomorphism.
Then φ−1 : H → G is an isomorphism.

Proof. By definition, φ is bijective, so it is invertible. Let h1, h2 ∈ H. Since φ is
bijective, there exist unique g1, g2 ∈ G such that φ(g1) = h1 and φ(g2) = h2. Then
h1h2 = φ(g1)φ(g2) = φ(g1g2). Thus φ−1(h1h2) = g1g2 = φ−1(h1)φ−1(h2). �
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Proposition 26. Let φ : G → H and ψ : H → K be isomorphisms. Then
ψ ◦ φ : G→ K is an isomorphism.

Proof. We have seen that the composition of homomorphisms is a homomorphism,
and that the composition of bijective functions is bijective. Thus the result. �

The three propositions above infer that isomorphism is an equivalence relation
on any collection of groups; that is,

(a) G ∼= G;
(b) G ∼= H implies H ∼= G;
(c) G ∼= H and H ∼= K implies G ∼= K.

Example 38. The function exp : R → R> is an isomorphism from the additive
group of real numbers to the multiplicative group of positive real numbers, with
inverse log : R> → R. Thus (R,+, 0) ∼= (R>, ·, 1).

4.5. Kernels. Homomorphisms are consistent in the sense that the cardinalities of
the preimages of any two points are the same. This is a major theme in algebra, and
we begin to develop it now. We start by showing the a homomorphism is injective
if and only if its kernel is trivial.

Definition 10. Let φ : G→ H be a homomorphism.
The kernel of φ is the subset of G denoted by ker(φ) and defined by

ker(φ) = {g ∈ G | φ(g) = 1H}.
Proposition 27. Let φ : G→ H be a homomorphism. Then ker(φ) ≤ G.

Proof. The kernel of φ is the preimage of the trivial subgroup {1H} ≤ H, and as
such, it is a subgroup of the domain G. �

Example 39. Consider the homomorphism ξ : Z → Zn given by ξ(a) = a. Then
ξ(a) = 0 if and only if a ≡ 0 (mod n), that is, if a is a multiple of n. Thus the
kernel of ξ is

ker(ξ) = nZ = {a ∈ Z | a = nb for some b ∈ Z}.
Example 40. Consider the linear transformation T : R3 → R3 given as projection
onto the xy-plane. Then T is a homomorphism of additive groups, and the kernel
of T is the z-axis.

Proposition 28. Let φ : G→ H be a homomorphism.
Then φ is injective if and only if ker(φ) = {1G}.
Proof.
(⇒) Suppose the φ is injective. Since the identity of G maps to the identity of H,
no other element of G may map to the identity of H.
(⇐) Suppose that ker(φ) is trivial. Then

φ(g1) = φ(g2)⇔ φ(g1)φ(g2)−1 = 1H

⇔ φ(g1)φ(g−1
2 ) = 1H

⇔ φ(g1g
−1
2 ) = 1H

⇔ g1g
−1
2 = 1G

⇔ g1 = g2.

�
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5. Permutation Representations

Groups were originally invented (discovered?) in the context of permutation
groups. Later, the concept was generalized to use the definition we have given on
the first page. Eventually, Cayley showed that the generalization actually did not
introduce any new groups (up to isomorphism).

Let X be any set. A permutation of X is a bijective function X → X. The
composition of permutations of X is another permutation of X. Composition is
associative. The identity map of X onto itself is a permutation of X, and the
inverse of a permutation is a permutation.

The symmetry group of X is

Sym(X) = {α : X → X | α is bijective };
this is a group under composition.

A symmetry group is a subgroup of Sym(X), for some X. Next we show that
every finite group is isomorphic to a symmetry group.

Proposition 29 (Cayley’s Theorem). Let G be a group. For each g ∈ G, define a
function

φg : G→ G given by φg(x) = gx.

Then φg is bijective. Define a function

Φ : G→ Sym(G) given by Φ(g) = φg.

Then Φ is an injective group homomorphism, and G is isomorphic to Φ(G) ≤
Sym(G).

Proof. For each g, x ∈ G, we have φg−1 ◦ φg(x) = φg−1(gx) = g−1gx = x, so φg−1 ◦ φg is
the identity function; thus φg is invertible, and is therefore bijective.

To show that Φ is a homomorphism, let g, h ∈ G. Select x ∈ G and compute

Φ(gh)(x) = φgh(x) = (gh)x = g(hx) = gφh(x) = φg(φh(x))

= φg ◦ φh(x) = (Φ(g)) ◦ Φ(h))(x);

since this is the case for all x ∈ G, we have Φ(gh) = Φ(g)◦Φ(h), so Φ is a homomorphism.
Finally, suppose that g, h ∈ G such that Φ(g) = Φ(h), so that φg = φh as functions.

Then φg(1) = φh(1), that is, g = h.
If we restrict the codomain of Φ to the image of G, we obtain an isomorphism Φ : G→

Sym(G). Thus G ∼= Φ(G); that is, G is isomorphic to a symmetry group. �

Consider the case where X is finite, say of cardinality n. An enumeration of
X is an injective function f : X → {1, . . . , n}. If α is a permutation of X, then
f ◦ α ◦ f−1 is a permutation of {1, . . . , n}. This gives a function Sym(X) → Sn

which is a group homomorphism. In other words, symmetry groups in Sym(X)
may be viewed as subgroups of Sn.

An embedding is an injective group homomorphism. The image of the domain is
a subgroup of the codomain which is isomorphic to the domain. Cayley’s Theorem
states that G embeds into Sym(G), and if G is finite, if we enumerate G, this
produces an embedding of G into Sn.

Let G be a group. A permutation representation of G is a group homomorphism
φ : G → Sn. This representation is faithful if φ is injective. The image of φ is a
subgroup of Sn, and if φ is faithful, φ(G) is isomorphic to G.
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